ANSI/CEA Standard
Versatile Home Network
ANSI/CEA-851-A

July 2006
NOTICE

Consumer Electronics Association (CEA®) Standards, Bulletins and other technical publications are designed to serve the public interest through eliminating misunderstandings between manufacturers and purchasers, facilitating interchangeability and improvement of products, and assisting the purchaser in selecting and obtaining with minimum delay the proper product for his particular need. Existence of such Standards, Bulletins and other technical publications shall not in any respect preclude any member or nonmember of CEA from manufacturing or selling products not conforming to such Standards, Bulletins or other technical publications, nor shall the existence of such Standards, Bulletins and other technical publications preclude their voluntary use by those other than CEA members, whether the standard is to be used either domestically or internationally.

Standards, Bulletins and other technical publications are adopted by CEA in accordance with the American National Standards Institute (ANSI) patent policy. By such action, CEA does not assume any liability to any patent owner, nor does it assume any obligation whatever to parties adopting the Standard, Bulletin or other technical publication.

This CEA Standard is considered to have International Standardization implication, but the International Electrotechnical Commission activity has not progressed to the point where a valid comparison between the CEA Standard and the IEC document can be made.

This Standard does not purport to address all safety problems associated with its use or all applicable regulatory requirements. It is the responsibility of the user of this Standard to establish appropriate safety and health practices and to determine the applicability of regulatory limitations before its use.

This document is copyrighted by the Consumer Electronics Association (CEA®) and may not be reproduced, in whole or part, without written permission. Federal copyright law prohibits unauthorized reproduction of this document by any means. Organizations may obtain permission to reproduce a limited number of copies by entering into a license agreement. Requests to reproduce text, data, charts, figures or other material should be made to CEA.

(Formulated under the cognizance of the CEA’s R7 Home Network Committee.)

Published by
©CONSUMER ELECTRONICS ASSOCIATION 2006
Technology & Standards Department
www.CE.org

All rights reserved
FOREWORD

This standard was developed under the auspices of the R7 Home Network Committee.

It should be noted that this current version, CEA-851-A, supersedes CEA-851.

The Video Electronics Standards Association (VESA) established the VESA Home Network (VHN) Committee in 1995 to create the architecture for a digital, broadband home network. The VHN standard was initially developed by the VESA Home Network Committee. However, it was never ratified as a VESA standard.

In June 1999, the Consumer Electronics Association (CEA) established the R7 Committee to help harmonize the several efforts being undertaken to develop home networking standards. In January 2000, the Board of Directors of VESA and the Board of Directors of the Consumer Electronics Association agreed to merge the VESA Home Network and the CEA R7 Committee, by establishing the CEA R7.4 Committee.

CEA-851 was completed and approved in 2000. Work started on CEA-851-A in 2003. Subsequently, CEA-851-A was transferred to R7 WG3 as the R7 standards committee was reorganized by the CEA and R7.4 was dissolved. In 2004 CEA asked the 1394 Trade Association (1394TA) to help develop CEA-851-A. The 1394TA presented a proposal for CEA-851-A to CEA in January 2005.

This standard is to be forwarded to JTC1 SC25 WG1 for international adoption.
TABLE OF CONTENTS

1 Scope and Purpose ... 2
 1.1 Purpose .. 2
 1.2 Scope .. 3

2 Normative References..5
 2.1 Normative Reference List .. 5
 2.2 Request For Comments (RFCs)... 8
 2.3 Informative References .. 8

3 Definitions and Abbreviations .. 9
 3.1 Definitions.. 9
 3.2 Abbreviations .. 15

4 Conformance .. 18
 4.1 VHN Home Network .. 18
 4.2 VHN Devices.. 18

5 Network Infrastructure... 19
 5.1 Overview of Media and Topology ... 19
 5.2 Physical Media .. 20
 5.2.1 Category 5e UTP .. 20
 5.2.2 Glass Optical Fiber .. 20
 5.2.3 Plastic Optical Fiber .. 20
 5.3 Topology .. 20
 5.4 Backbone Physical & Data Link Layer (IEEE 1394b).. 21
 5.5 Protocol Stacks, Network Layers, Services & Streams ... 21
 5.5.1 Protocol Stacks Overview .. 22
 5.5.2 IEEE 1394 Initialization .. 22
 5.5.2.1 IEEE 1394 Node Discovery .. 23
 5.5.2.2 AV/C Node Discovery .. 23
 5.5.3 Description of Specific Protocols .. 23
 5.5.3.1 IEEE 1394 Physical Layer ... 23
 5.5.3.2 IEEE 1394b ... 23
 5.5.3.3 IEEE 1394 Link Layer .. 24
 5.5.3.4 IEEE 1394 Transaction Layer .. 24
 5.5.3.5 IEEE 1394 Serial Bus Management .. 24
 5.5.3.6 Function Control Protocol (FCP).. 24
 5.5.3.7 AV/C READ DESCRIPTOR Command .. 24
 5.5.4 Internet Protocol (IP)... 24

6 Addressing, Discovery, and Control... 25
 6.1 Heterogeneous Networks.. 25
 6.2 User-to-Device Control... 25
 6.3 UPnP .. 25
E.3.1 The Participants in Association Control ... 46
E.3.2 Discovery .. 46
E.3.3 Description ... 47
E.3.4 Presentation ... 47
E.4 Control and Event Notification... 47
 E.4.1 Communications between Devices and Control Points 47
 E.4.2 Control .. 48
 E.4.3 Event Notification ... 48
Annex F CEA-851.1, IP-based Telephony (Informative) .. 49
 F.1 Overview of CEA-851.1 ... 49
 F.2 Scope of CEA-851.1 ... 49
Annex G - The ISO/IEC 15045 Residential Gateway (Informative)............................ 50
 G.1 Overview of ISO/IEC 15045 ... 50
 G.2 Firewall ... 50
 G.3 LAN Adapter .. 50
 G.4 Application Controller .. 51
 G.5 HomeGate Implementation ... 51
 G.6 Further HomeGate Developments ... 51
FIGURES

Figure 1 – A VHN Home Network ... 3
Figure 2 – An Abstract VHN Home Network ... 4
Figure 3 – VHN Protocol Stacks... 22
Figure 4 – Protocol Stack for Initialization ... 23
Figure 5 – Protocol Stack for Internet Protocol 25
Figure 6 – UPnP AV Streaming ... 27
Figure 7 – Example of Protocol Stacks in a Backbone-Component Interface 32
Figure 8 – A VHN Home Network with CATV, DBS, and POTS Access 36
Figure 9 – A VHN Home Network with a Residential Gateway 37
Figure 10 – A VHN Home Network with a Multimedia Hub 38
Figure 11 – OSI Reference Model .. 41
Introduction

This standard defines an IP-enabled network for connecting cluster networks to a whole-home broadband distribution backbone in order to facilitate integrated operation of appliances and networked components. The distribution network in this standard is based on IEEE 1394. This network will accommodate Ethernet as an attached network via a bridge, and directly with the introduction of IEEE 1394c. The network defined in this standard is called the Versatile Home Network (VHN Home Network). The VHN Home Network provides a flexible and open network architecture and communications protocol specification for digital devices in the home.

Function and use of a VHN Home Network:

- Allows the transfer of information among all connected digital devices in the home, either as directly connected end devices or as part of a cluster network.
- Allows interoperability between devices on different cluster networks in the home, including low bandwidth networks and high bandwidth networks.
- Provides a common interface to Residential Gateways that connect devices in the home to access networks.
- Provides user-to-device control.
- Provides device-to-device control.
- Provides home network management for devices and applications.

NOTE: CEA-851-A defines a home intranet as a collection of networks that provides complete connectivity between end devices. This intranet uses the facilities of the TCP/IP protocol suite for asynchronous (and some isochronous) communications. Almost all of the underlying technologies, from media to applications, are defined elsewhere, as standards that were developed by national standards bodies, by international standards bodies, or by industry consortia. CEA-851-A is different from most other standards in that it places unusual emphasis on incorporation of these other technologies and protocols. In many cases, the entire technology or protocol is included by reference in CEA-851-A. Thus, a single sentence in this standard may imply hundreds of pages of definitions and requirements from other documents. It is important for the reader and user of CEA-851-A to understand that the underlying specifications must be respected, and carefully followed, for the VHN to be an effective integrating tool for the home network.
1 Scope and Purpose

1.1 Purpose

The VHN enables several important classes of applications for the home network:

- **Entertainment services** — which include the distribution of video, audio, and video games, and the control of audio/video (A/V) devices such as TVs, VCRs, and set-top boxes.

- **Communication services** — which include voice telephony (wired and wireless), video telephony, video conferencing, distance learning, and remote access to corporate networks.

- **Information services** — which include Internet access, on-line service access, PC file and printer sharing, news and information on demand, home shopping, and home banking.

- **Home automation services** — which include lighting, appliance control, energy management, comfort control, and premises security.

Figure 1 shows a VHN Home Network that supports these services.
1.2 Scope

The VHN Home Network is defined by an abstract model (see Figure 2) that satisfies the needs of the classes of applications described in the Section 1.1. The model consists of:

- A backbone network.
- One or more component networks.
- A number of access devices that connect the home network to external access networks.
- A number of network devices that connect component networks to the home backbone network.
- End devices that provide various functional services to the home user.
The key components of the VHN network architecture are:

- **End Device** — An end device is a digital device connected to the home network that provides some utility (other than network service) to the end user. Examples of end devices are printers, televisions, audio speakers, security sensors, and HVAC (Heating, Ventilating, and Air-Conditioning) controllers.

- **Component Networks** — The component networks enable the several devices connected to them to communicate with each other. The component network is connected to the backbone through a backbone-component interface. The choice of a component network for a particular device is dictated by the communication needs and cost points of the device. Some examples of important component networks are IEEE 1394-1995, Ethernet, HomePNA, X-10™, Powerline CEBus™, Echonet™, and RF Wireless LAN.

- **Backbone-Component Interface** — In VHN Home Network terminology, a network interconnection or backbone-component interface device is an element that provides network services to end devices. Examples of network devices include repeaters, bridges, routers, brouters, and network management stations, or any device that implements such a function (e.g., a personal computer).
- **Access-Backbone Interface and Access-Component Interface**—An access-backbone interface connects an external access network to the home network. Access-component interfaces connect to a component interface through which a connection is made to the home network backbone. Some examples of access interfaces are a POTS modem, an xDSL adapter, a cable modem, a DBS (satellite TV service) decoder, and a Residential Gateway. ISO/IEC 15045, “Residential Gateway,” defines a standard residential gateway that is referenced in this standard (see Section 8.1).

The VHN Home Network architecture is extremely flexible, allowing it to be adapted to meet the needs of many living styles. Annex A contains illustrations of three VHN Home Network implementations as examples of how the abstract architecture of Figure 2 may be translated into an actual VHN Home Network.

2 Normative References

2.1 Normative Reference List

The following standards contain provisions that, through reference in this text, constitute normative provisions of this standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this standard are encouraged to investigate the possibility of applying the most recent editions of the standards listed in this section.

4. CEA-851.1, IP-Based Digital Telephony for the Versatile Home Network

5. CEA-851.2, Security Services for the Versatile Home Network

6. CEA-2007, QoS Priority Groupings for 802.1Q

